Где наибольшее излучение микроволновки и как защититься? Как защититься от электромагнитного поля бытовой техники Защита от радиации микроволновой печи

10.01.2023

Сегодня окружает нас в мире везде и постоянно электромагнитные излучения и никто не может себя полностью обезопасить от них, но Все Мы можем свести к минимуму вредное воздействие окружающих нас вокруг электромагнитных полей.

Места общего пользования.
В городах республики Беларусь источниками самого высокого уровня излучения являются: электрический транспорт (троллейбусы, трамваи, и особенно с высоким питающим — электрички и метро) и воздушные линии электропередач (ЛЭП), которые передают от 400 Вольт до 330 000 Вольт. Уровень опасности многократно отличается в зависимости от величины передаваемого напряжения ЛЭП. Например, 330 кВ (можно увидеть возле МКАД, идущую от ТЭЦ) он запредельный, поэтому они особенно опасны. Возле высоковольтных линий запрещено любое возведение построек и домов, потому что самый эффективный метод уменьшения вредного воздействия излучения на людей- это защита расстоянием.

Стоит также избегать мест с близким расположением телевизионных и радиовещательных сигналов. В ближайшее время, благодаря повсеместному переходу на цифровое вещание и отказ от традиционной аналоговой телетрансляции- произойдет значительное снижение излучения передатчиков сигналов, потому что для цифрового телевидения при том же уровне вещания требуется гораздо меньшего уровня мощность ретранслятора.

Мобильная связь.
Сегодня в связи с широким распространением средств мобильной связи, необходимо обязательно предпринимать меры по защите себя от ее пагубного влияния. Последние исследования убедительно доказывают о вреде для человека не только мобильных телефонов, но и да же Wi-Fi точек.

Электрическая проводка и приборы.

Многие ошибочно полагают, что если в розетку ничего не включено, то она безопасна. Это заблуждение, пока включен автомат и на розетке или выключателе присутствует напряжение- они будут источниками излучения, так же как и провода или кабеля в стене или телевизор, принтер в режиме ожидания или включенный в розетку настольный светильник, электрочайник т. п.

Защитится просто- располагайте места для длительного отдыха или времяпровождения по дальше от электроприборов, розеток, светильников, выключателей, электропроводки, идущей в стене.
Выключайте из сети неиспользуемый телевизор, принтер, компьютер. А устройства с металлическим корпусом (микроволновка, холодильник, стиральная машина) будут в много раз меньше излучать, если их корпуса заземлить, подключив к розеткам с заземляющими контактами розетки с трех проводной электропроводкой.

Персональные компьютеры и ноутбуки.
Сегодня у каждого в доме, да и не один компьютер или ноутбук. Нужно помнить и соблюдать следующее: расположить по дальше, желательно под стол системный блок и ни в коем случае не держать на коленях ноутбук. Не забывайте делать перерывы в работе!

Общие рекомендации!
По возможности ограничьте одновременную работу электроприборов вокруг себя! Так мой знакомый, работающий в офисе за компьютером, когда приходит домой включает телевизор сразу, электрический чайник, микроволновку, ноутбук и еще успевает по мобильному телефону поговорить. И не удивительно, что у него голова болит, когда приходит время ложиться спать!

Берегите свое здоровье! Не рекомендую зацикливаться на защите от электромагнитного излучения. Лучше старайтесь максимально придерживаться вышеизложенных рекомендации. И хотя бы раз в неделю делать разгрузку, выезжая за город на природу по дальше от современных устройств и благ!

Похожие материалы.

на тему: Защита от СВЧ- излучений

Цель работы

  • 1) ознакомиться с характеристиками электромагнитного излучения и нормативными требованиями к его уровням;
  • 2) провести измерения интенсивности электромагнитного излучения СВЧ-диапазона на различных расстояниях от источника;
  • 3) оценить эффективность защиты от СВЧ-излучения с помощью экранов из различных материалов. магнитный поле излучение защита
  • 1. Теоретическая часть

Электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Электрическое поле характеризуется напряженностью Е, В/м; магнитное поле характеризуется напряженностью Н, А/м, или плотностью магнитного потока В, Тл.

Таблица 1. ПДУ СВЧ - излучений

Внешний вид стенда для проведения Л.Р. №1 представлен на рисунке 1.

Рис. 1. Стенд лабораторный "Защита от СВЧ-излучения БЖ 5м"

В качестве источника СВЧ излучения используется бытовая СВЧ-печь.

Стенд представляет собой стол лабораторный 1, на котором размещаются СВЧ печь 2, стойка 5 с датчиком 4 измерителя плотности потока энергии (далее - датчик), узлы 6 установки сменных защитных экранов.

Стол выполнен в виде металлического сварного каркаса со столешницей, на поверхности которой с помощью самоклеющейся бумаги Jet Laser нанесена координатная сетка 3 с изображением осей X и Y.

Стенд обеспечивает три степени свободы перемещения датчика (перемещение по осям X,Y,Z), что дает возможность исследовать излучение со стороны передней панели СВЧ печи (место наиболее интенсивного излучения) и по всей площади координатной сетки.

В качестве нагрузки в СВЧ печи используется огнеупорный шамотный кирпич, устанавливаемый на неподвижную подставку, в качестве которой используется неглубокая фаянсовая тарелка, что обеспечивает стабильность измеряемого сигнала (предварительно удаляются из печи поворачивающийся столик и роликовое кольцо).

Датчик 4 выполнен в виде полуволнового вибратора на частоту 2,45 ГГц, закрепленного на стойке 5 с возможностью перемещения по вертикали (ось Z), выполненной из диэлектрического материала.

Узлы 6 установки сменных защитных экранов обеспечивают оперативную установку и замену экрана 7. Сменные экраны имеют один типоразмер. Экраны изготовлены из следующих материалов: металлическая сетка, металлический лист, резина, полистирол ударопрочный.

В качестве измерительного прибора используется мультиметр 8, который располагается на свободной части столешницы (за пределами координатной сетки).

2. Практическая часть

Результаты измерений

Таблица 2. Результаты измерений интенсивности излучения

Номер измерения

Координата Х, см

Координата Y, см

Координата Z, см

Интенсивность излучения

Показания мультиметра, мкА

ППЭ, мкВт/см 2

Таблица 3. Эффективность экранирования

Вывод

В результате лабораторной работы были изучены характеристики электромагнитного излучения и нормативные требованиями к его уровням, проведены измерения интенсивности электромагнитного излучения СВЧ-диапазона на различных расстояниях от источника, оценена эффективность защиты от СВЧ-излучения с помощью экранов из различных материалов. В результате измерений было установлено, что наиболее эффективными защитными материалами являются металлический экран, металлическая мелкая сетка и ПВХ, а наименее эффективной оказалась резина. СВЧ излучение на расстоянии от 40 см является оптимальным.

Ответы на контрольные вопросы: 1 вопрос.

Основные характеристики ЭМП. Какие параметры характеризуют ЭМП в «ближней» и «дальней» зонах? Электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Электрическое поле характеризуется напряженностью Е, В/м; магнитное поле характеризуется напряженностью Н, А/м, или плотностью магнитного потока В, Тл. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле с напряженностью Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне). Электромагнитные волны характеризуются длиной волны л, м, или частотой f , Гц. Для вакуума справедливо соотношение л = с / f , где с - скорость света в вакууме, равная 3 х 108 м/с. В области классификации частот ЭМП следует отметить строго ограниченный диапазон - от 0 Гц (статические поля) до 300 ГГц. Хотя инфракрасное, световое, ультрафиолетовое, рентгеновское излучения (и далее) также имеют электромагнитную природу, как правило, под ЭМП понимают электромагнитные поля и колебания именно в отмеченном диапазоне. На сегодняшний день находят применение три шкалы частот: - "радиотехническая", изложенная в Регламенте радиосвязи; - "медицинская", приведенная в документах ВОЗ; - "электротехническая", предложенная Международным электротехническим комитетом (МЭК), которая является наиболее распространенной. По третьей шкале классификация ЭМП выглядит следующим образом: - низкочастотные (НЧ) - от 0 до 60 Гц; - среднечастотные (СЧ) - от 60 Гц до 10 кГц; - высокочастотные (ВЧ) - от 10 кГц до 300 МГц; - сверхвысокочастотные (СВЧ) - от 300 МГц до 300 ГГц. По энергетическому спектру ЭМП разделяются на следующие группы, первоначально разделенные в теории электромагнитной совместимости: синусоидальные (монохроматические); модулированные; импульсные; флуктуационные (шумовые). Характеризуя зоны воздействия ЭМП, во всех исследованиях, как правило, рассматривают монохроматические поля. Обозначая длину волны ЭМП л, на расстоянии от источника r, выделяют три зоны воздействия 1) ближняя (зона индукции): л / r > > 1; 2) промежуточная (резонансная): л / r ? 1; 3) дальняя (волновая, или квазиоптическая): л / r < < 1. Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны. В "ближней" зоне, или зоне индукции, на расстоянии от источника r < л, ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату (кубу) расстояния от источника r2 (r3). В "ближней" зоне излучения электромагнитная волна еще не сформирована. ЭМП в зоне индукции служит для формирования бегущих составляющих поля, ответственных за излучение (электромагнитной волны). Для характеристики ЭМП в ближней зоне измерения напряженности электрического поля Е и напряженности магнитного поля Н производятся раздельно. "Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3 л. В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r. В "дальней" зоне излучения есть связь между величинами Е и Н: Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. В России на частотах свыше 300 МГц до 300 ГГц (СВЧ - диапазон) измеряется плотность потока электромагнитной энергии ППЭ, Вт/м2, или вектор Пойнтинга. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны. Чем больше частота излучения f (соответственно, короче длина волны л), тем больше энергия кванта излучения. Связь между энергией Y и частотой f электромагнитных колебаний определяется как Y = h f , где h - постоянная Планка, равная = 6,6 х 10 34 Вт/см 2. Таким образом, ЭМП в дальней (волновой) зоне характеризуется как электромагнитное излучение (ЭМИ), или СВЧ-излучение, а его интенсивность определяется как ППЭ в Вт/м2 (мВт/см2, мкВт/см2).

Ответ на 2 вопрос

Нормы воздействия СВЧ-излучений на работающих и население. Российскими нормативными документами, устанавливающими предельно допустимые уровни (ПДУ) ЭМИ, являются существующие параллельно Государственные стандарты Системы стандартов безопасности труда (ССБТ) и санитарные правила и нормы (СанПин). Гигиенические стандарты и нормы традиционно разрабатывались для двух категорий облучения - профессионального, т.е. облучения на рабочих местах, и непрофессионального - облучения населения, профессионально не связанного с использованием ЭМП. В последнее время формируется еще одна категория - профессиональное облучение особого контингента населения. К нему, прежде всего, относятся женщины в состоянии беременности и лица, не достигшие 18 лет; для этих лиц в современных российских нормах установлены достаточно жесткие ПДУ. Зарубежные стандарты разрабатываются преимущественно на экспериментально-расчетных методах, причем выводы строятся на основе острых опытов с выраженными поражениями биообъекта. Такой подход позволил выполнить непрерывное нормирование во всем диапазоне ЭМП от 0 Гц до 300 ГГц. В ряде зарубежных стандартов дополнительно установлены особые ПДУ также для людей с имплантированными кардиостимуляторами. Биофизической основой для разработки отечественных нормативных документов послужили две группы биоэффектов, помимо "кратковременного термического": - кумуляция эффекта воздействия в организме при длительном непрерывном и дробном воздействии, особенно в пределах дотепловых уровней; - обратимость эффектов и адаптация облучаемого организма при наличии больших пауз между экспозициями. Подобный подход потребовал значительного объема медико-биологических исследований и не позволил интерполировать результаты нормирования на другие частотные диапазоны. Этим, в частности, объясняется разрывный (ступенчатый) характер отечественных ПДУ, к тому же не перекрывающих весь частотный диапазон от 0 Гц до 300 ГГц. Следует отметить, что темпы развития техники существенно опережают темпы разработки отечественных стандартов и норм. ПДУ ППЭ в диапазоне частот свыше 300 МГц до 300 ГГц, согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях", представлены в табл.1. Т а б л и ц а 1 ПДУ СВЧ-излучений Категория облучаемых лиц Плотность потока энергии СВЧ-излучения, мкВт/см2 Работающие с источниками излучения в течение 8-часовой смены 10 Не более 2 час. в смену 100 Не более 20 мин. в смену 1000 Лица, не связанные с источниками излучения профессионально 1 Население 1 Оценка и нормирование воздействия ЭМП диапазона частот свыше 30 кГц до 300 ГГц, включая СВЧ ЭМИ, осуществляется по величине энергетической экспозиции (ЭЭ). Энергетическая экспозиция в диапазоне частот свыше 300 МГц до 300 ГГц рассчитывается по формуле:

ЭЭппэ = ППЭ х Т, (Вт/м2) ч, (мкВт/см2) ч, (1) где ППЭ - плотность потока энергии (Вт/м2, мкВт/см2); Т - время воздействия за смену (час.). ПДУ ЭЭ в диапазоне частот свыше 300 МГц до 300 ГГц на рабочих местах за смену не должен превышать величины 200 мкВт/см2 х час.

  • 3 вопрос. Организационные и лечебно-профилактические мероприятия по защите от ЭМП. Организационные мероприятия при проектировании и эксплуатации оборудования, являющегося источником ЭМП или объектов, оснащенных источниками ЭМП, включают: - выбор рациональных режимов работы оборудования; - выделение зон воздействия ЭМП (зоны с уровнями ЭМП, превышающими предельно допустимые, где по условиям эксплуатации не требуется даже кратковременное пребывание персонала, должны ограждаться и обозначаться соответствующими предупредительными знаками); - расположение рабочих мест и маршрутов передвижения обслуживающего персонала на расстояниях от источников ЭМП, обеспечивающих соблюдение ПДУ; - проведение ремонта оборудования, являющегося источником ЭМП, вне зоны влияния ЭМП от других источников (по возможности); - соблюдение правил безопасной эксплуатации источников ЭМП. Защита временем применяется, когда нет возможности снизить интенсивность излучения в данной точке до предельно допустимого уровня. В действующих ПДУ предусмотрена зависимость между интенсивностью плотности потока энергии и временем облучения. Защита расстоянием применяется, если невозможно ослабить ЭМП другими мерами, в том числе и защитой временем. Защита расстоянием положена в основу зон нормирования излучений для определения необходимого разрыва между источниками ЭМП и жилыми домами, служебными помещениями и т.п. Для каждой установки, излучающей электромагнитную энергию, должны определяться санитарно-защитные зоны в которых интенсивность ЭМП превышает ПДУ. Границы зон определяются расчетно для каждого конкретного случая размещения излучающей установки при работе их на максимальную мощность излучения и контролируются с помощью приборов. В соответствии с ГОСТ 12.1.026-80 зоны излучения ограждаются либо устанавливаются предупреждающие знаки с надписями: «Не входить, опасно!». В целях предупреждения и раннего обнаружения изменений состояния здоровья все лица, профессионально связанные с обслуживанием и эксплуатацией источников ЭМП, должны проходить предварительный при поступлении и периодические профилактические медосмотры в соответствии с действующим законодательством. Лица, не достигшие 18-летнего возраста, и женщины в состоянии беременности допускаются к работе в условиях воздействия ЭМП только в случаях, когда интенсивность ЭМП на рабочих местах не превышает ПДУ, установленных для населения.
  • 4 вопрос. Инженерно-технические методы и средства защиты от ЭМП. Инженерно-технические мероприятия должны обеспечивать снижение уровней ЭМП на рабочих местах путем внедрения новых технологий и применения средств коллективной и индивидуальной защиты (когда фактические уровни ЭМП на рабочих местах превышают ПДУ, установленные для производственных воздействий). Руководители организаций для снижения риска вредного влияния ЭМП, создаваемого средствами радиолокации, радионавигации, связи, в том числе подвижной и космической, должны обеспечивать работающих средствами индивидуальной защиты. Инженерно-технические защитные мероприятия строятся на использовании явления экранирования электромагнитных полей непосредственно в местах пребывания человека либо на мероприятиях по ограничению эмиссионных параметров источника поля. Последнее, как правило, применяется на стадии разработки изделия, служащего источником ЭМП. Радиоизлучения могут проникать в помещения, где находятся люди, через оконные и дверные проемы. Для экранирования смотровых окон, окон помещений, застекления потолочных фонарей, перегородок применяется металлизированное стекло, обладающее экранирующими свойствами. Такое свойство стеклу придает тонкая прозрачная пленка либо окислов металлов, чаще всего олова, либо металлов - медь, никель, серебро и их сочетания. Пленка обладает достаточной оптической прозрачность и химической стойкостью. Будучи нанесенной на одну сторону поверхности стекла она ослабляет интенсивность излучения в диапазоне 0,8 - 150 см на 30 дБ (в 1000 раз). При нанесении пленки на обе поверхности стекла ослабление достигает 40 дБ (в 10000 раз). Для защиты населения от воздействия электромагнитных излучений в строительных конструкциях в качестве защитных экранов могут применяться металлическая сетка, металлический лист или любое другое проводящее покрытие, в том числе и специально разработанные строительные материалы. В ряде случаев достаточно использования заземленной металлической сетки, помещаемой под облицовочный или штукатурный слой. В качестве экранов могут применяться также различные пленки и ткани с металлизированным покрытием. В последние годы в качестве радиоэкранирующих материалов получили металлизированные ткани на основе синтетических волокон. Их получают методом химической металлизации (из растворов) тканей различной структуры и плотности. Существующие методы получения позволяет регулировать количество наносимого металла в диапазоне от сотых долей до единиц мкм и изменять поверхностное удельное сопротивление тканей от десятков до долей Ом. Экранирующие текстильные материалы обладают малой толщиной, легкостью, гибкостью; они могут дублироваться другими материалами (тканями, кожей, пленками), хорошо совмещаются со смолами и латексами.
  • 5 вопрос. Чем определяется эффективность применяемых защитных экранов? Эффективность средств защиты определяется по степени ослабления интенсивности ЭМП, выражающейся коэффициентом экранирования (коэффициент поглощения или отражения), и должна обеспечивать снижение уровня излучения до безопасного в течение времени, определяемого назначением изделия. Оценка безопасности и эффективности средств защиты должна производиться в испытательных центрах (лабораториях), аккредитованных в установленном порядке. Контроль эффективности коллективных средств защиты на рабочих местах должен производиться в соответствии с техническими условиями, но не реже 1 раза в 2 года; индивидуальных средств защиты - не реже 1 раза в год.

Среди огромного разнообразия электромагнитных волн, существующих в природе, весьма скромное место занимает микроволновое или сверхвысокочастотное излучение (СВЧ). Отыскать этот частотный диапазон можно между радиоволнами и инфракрасной частью спектра. Протяжённость его не особенно велика. Это волны длиной от 30 см до 1 мм.

Поговорим о его происхождении, свойствах и роли в сфере обитания человека, о том, как влияет этот «молчаливый невидимка» на человеческий организм.

Источники СВЧ-излучения

Существуют природные источники микроволнового излучения - Солнце и другие космические объекты. На фоне их излучения и происходило формирование и развитие человеческой цивилизации.

Но в наш, насыщенный всевозможными техническими достижениями век, к естественному фону присовокупились ещё и рукотворные источники:

  • радиолокационные и радионавигационные установки;
  • системы спутникового телевидения;
  • сотовые телефоны и микроволновые печи.

Как микроволновое излучение влияет на здоровье человека

Результаты исследования влияния микроволнового излучения на человека позволили установить, что СВЧ лучи не обладают ионизирующим действием. Ионизированные молекулы - это дефектные частички вещества, приводящие к мутации хромосом. В результате живые клетки могут приобрести новые (дефектные) признаки. Этот вывод не означает, что микроволновое излучение не оказывает вред на человека.

Изучение влияния СВЧ-лучей на человека, позволило установить следующую картину - при их попадании на облучаемую поверхность, происходит частичное поглощение поступающей энергии тканями человека. В результате в них возбуждаются высокочастотные токи, нагревающие организм.

Как реакция механизма терморегуляции, следует усиление циркуляции крови. Если облучение было локальным, возможен быстрый отвод тепла от разогретых участков. При общем облучении такой возможности нет, поэтому оно является более опасным.

Поскольку циркуляция крови выполняет роль охлаждающего фактора, то в органах, обеднённых кровеносными сосудами, тепловой эффект выражен наиболее ярко. В первую очередь - в хрусталике глаза, вызывая его помутнение и разрушение. К сожалению, эти изменения необратимы.

Наиболее значительной поглощательной способностью отличаются ткани с большим содержанием жидкого компонента: крови, лимфы, слизистой желудка, кишечника, хрусталика глаза.

В результате могут наблюдаться:

  • изменения в крови и щитовидной железе;
  • снижение эффективности адаптационных и обменных процессов;
  • изменения в психической сфере, которые могут привести к депрессивным состояниям, а у людей с неустойчивой психикой - спровоцировать склонность к суициду.

Микроволновое излучение обладает кумулятивным эффектом. Если в первое время его воздействие проходит бессимптомно, то постепенно начинают формироваться патологические состояния. Вначале они проявляются в учащении головных болей, быстрой утомляемости, нарушениях сна, повышении артериального давления, сердечных болях.

При длительном и регулярном воздействии СВЧ излучение приводит к глубинным изменениям, перечисленным ранее. То есть, можно утверждать, что СВЧ излучение оказывает негативное влияние на здоровье человека. Причём отмечена возрастная чувствительность к микроволнам - молодые организмы оказались более подверженными влиянию СВЧ ЭМП (электромагнитного поля).

Средства защиты от СВЧ-излучения

Характер воздействия СВЧ излучения на человека зависит от следующих факторов:

  • удалённости от источника излучения и его интенсивности;
  • продолжительности облучения;
  • длины волны;
  • вида излучения (непрерывное или импульсное);
  • внешних условий;
  • состояния организма.

Для количественной оценки опасности введено понятие плотности излучения и допустимой нормы облучения. В нашей стране этот стандарт взят с десятикратным «запасом прочности» и равен 10 микроватт на сантиметр (10 мкВт/см). Это означает, что мощность потока СВЧ энергии, на рабочем месте человека не должна превышать 10 мкВт на каждый сантиметр поверхности.

Как же быть? Сам собой напрашивается вывод, что следует всячески избегать воздействия микроволновых лучей. Уменьшить воздействие СВЧ-излучения в сфере быта достаточно просто: следует ограничить время контакта с бытовыми его источниками.

Совершенно иной механизм защиты должен быть у людей, чья профессиональная деятельность связана с воздействием СВЧ радиоволн. Средства защиты от СВЧ-излучения подразделяются на общие и индивидуальные.

Поток излучаемой энергии убывает обратно пропорционально увеличению квадрата расстояния между излучателем и облучаемой поверхностью. Поэтому важнейшей коллективной защитной мерой является увеличение расстояния до источника излучения.

Другими действенными мерами по защите от СВЧ-излучения являются следующие:

Большая часть из них базируется на основных свойствах микроволнового излучения - отражении и поглощении веществом облучаемой поверхности. Поэтому защитные экраны подразделяются на отражающие и поглощающие.

Отражательные экраны выполняются из листового металла, металлической сетки и металлизированной ткани. Арсенал защитных экранов достаточно разнообразен. Это листовые экраны из однородного металла и многослойные пакеты, включающие слои изоляционных и поглощающих материалов (шунгита, углеродистых соединение) и т. д.

Конечным звеном в этой цепи являются средства индивидуальной защиты от СВЧ-излучения. Они включают спецодежду, выполненную из металлизированной ткани (халаты и фартуки, перчатки, накидки с капюшонами и вмонтированными в них очками). Очки покрыты тончайшим слоем металла, отражающего излучение. Их ношение обязательно при облучении в 1 мкВт/см.

Ношение спецодежды снижает уровень облучения в 100–1000 раз.

Польза микроволнового излучения

Вся предыдущая информация c негативной направленностью, имеет своей целью упредить нашего читателя от, исходящей от СВЧ-излучения, опасности. Однако среди специфических действий микроволновых лучей встречается термин стимуляция, то есть улучшение под их влиянием общего состояния организма или чувствительности его органов. То есть воздействие СВЧ-излучения на человека может быть и полезным. Терапевтическое свойство микроволнового излучения основано на его биологическом действии при физиотерапии.

Излучения, исходящие от специализированного медицинского генератора, проникает в организм человека на заданную глубину, вызывая прогревание тканей и целую систему полезных реакций. Сеансы СВЧ-процедур оказывают болеутоляющее и противозудное действие.

Их с успехом используют для лечения фронтита и гайморита, невралгии тройничного нерва.

Для воздействия на эндокринные органы, органы дыхания, почки, и лечения гинекологических заболеваний используют микроволновое излучение с большей проникающей способностью.

Исследование влияния СВЧ-излучения на организм человека начались несколько десятилетий назад. Накопленных знаний достаточно, чтобы быть уверенными в безвредности естественного фона этих излучений для человека.

Разнообразные генераторы этих частот, создают дополнительную дозу воздействия. Однако, их доля очень мала, а, используемая защита достаточно надёжна. Поэтому фобии об их огромном вреде не более чем миф, если соблюдаются все условия эксплуатации и защиты от промышленных и бытовых источников микроволновых излучателей.


Микроволновая печь представляет собой бытовой электрический прибор, который встречается на кухне почти так же часто, как и холодильник. Однако микроволновое излучение, используемое в таких печах для приготовления пищи, представляет значительную опасность для здоровья человека. Поэтому в микроволновых печах используются особые конструктивные и схемотехнические решения для обеспечения безопасности работающего с ними человека. В этой статье рассматривается устройство запорного механизма дверцы микроволновой печи разных фирм-производителей и некоторые его неисправности.

Приготовление пищи происходит в рабочей камера микроволновой (СВЧ) печи под действием излучения частотой 2450 МГц. Рабочая камера представляет собой металлическую емкость, с одной стороны которой в нее вводится СВЧ излучение мощностью 500...1000 Вт, вырабатываемое магнетроном. Камера печи представляет собой идеальное место для образования стоячих волн (можно провести аналогию с акустическим резонатором), а значит, в ней будут ряд минимумов и максимумов электромагнитных колебаний, возникающих вследствие многократного отражения электромагнитных волн от металличе

ских стенок камеры. Причем, размещение в камере пищи приводит к образованию колебаний в области частот выше 2450 МГц. Спектр резонансных частот камеры СВЧ печи с пищей и без нее приведен на рис. 1.

Рис. 1. Резонансные частоты камеры СВЧ печи без загрузки и с загрузкой камеры

Из рисунка видно, что увеличение загрузки камеры приготавливаемым продуктом приводит к усложнению распределения электромагнитных полей в камере.

В камере появляется, кроме основных, ряд комбинированных колебаний, что способствует более равномерному распределению электромагнитной энергии в камере и, как следствие, улучшению равномерности прогрева продукта. В то же время значительное обогащение спектра электромагнитных колебаний усложняет задачу по недопущению их выхода за пределы микроволновой печи.

Воздействие СВЧ излучения на человека

Токи высокой частоты в диапазоне 900 МГц...300 ГГц (УВЧ и СВЧ) создают в воздухе излучение, имеющее ту же электромагнитную природу, что и рентгеновское и гамма-излучение. Но если более высокочастотное излучение (видимый свет) почти полностью поглощается кожей и не проникает внутрь организма, то излучение в диапазоне 900.3000 МГц (рабо

чий диапазон мобильных телефонов и СВЧ печей) проникает внутрь человеческого организма на 3.10 см. При этом возникает опасность внутренних ожогов, которые гораздо более опасны, чем внешние ожоги .

Для бытовых микроволновых печей существует два стандарта уровней безопасного излучения:

Российский стандарт, который, как и европейский, предполагает, что уровень плотности излучения от печи не должен превышать 0,01 мВт/см 2 на расстоянии 0,5 м от печи;

Американский стандарт ANSI, который предлагает считать безопасным излучение с плотностью мощности 10 мВт/см 2 ;

При этом для СВЧ печей этим стандартом устанавливается допустимой плотность мощности 5 мВт/см2 на расстоянии 5 см от печи. Расхождение между цифрами в 500 раз вызвано тем, что российский стандарт разрабатывали медики с точки зрения защиты здоровья людей, а американский - производители микроволновых печей с точки зрения удешевления своей продукции.

Клинические данные свидетельствуют, что уже при плотности мощности 60 мкВт/см 2 - наблюдаются изменения в половых железах, в составе крови. Происходит помутнение хрусталика.

При дальнейшем увеличении интенсивности облучения происходят изменения в сворачиваемости крови, условно-рефлекторной деятельности, воздействие на клетки печени, изменения в коре головного мозга.

Микроволновая печь при выходной СВЧ мощности 800.900 Вт и открытой дверце создает интенсивность излучения до 5000 мкВт/см 2 , что крайне опасно.

Именно поэтому в СВЧ печах используется многоуровневая защита которая должна обеспечить отключение генерации микроволнового излучения при открытии дверцы печи.

Утечка энергии из камеры СВЧ печи и защита от нее

В камере бытовой печи имеются отверстия, предназначенные для ее вентиляции, освещения и т.д. Все эти отверстия можно считать источниками утечки СВЧ излучения. Поскольку толщина стенок камеры невелика, то можно условно принять ее равной нулю (по сравнению с длиной волны СВЧ колебаний, составляющих около 12 см) и рассматривать любое отверстие в камере не как волновод, а как диафрагму. Диафрагма может пропускать СВЧ излучение, если ее геометрические размеры больше, чем длина волны в камере печи. В противном случае имеет место эффективная экранировка электромагнитного излучения. В диапазоне частот излучения бытовых СВЧ печей заметная утечка происходит при превышении диаметра отверстия круглой формы в стенке печи величиной 10.15 мм. Сложнее обстоит дело с узкими щелями в камере печи, ширина которых значительно меньше длины волны излучения. Щель не излучает СВЧ энергию (независимо от ее длины), когда она расположена вдоль линий протекания тока в камере. Напротив, такие щели эффективно излучают, если они расположены поперек линий тока на поверхности камеры. Причем, замена одного большого отверстия на несколько маленьких, но имеющих такую же площадь, заметно уменьшает уровень излучения за пределами камеры печи. Значительное увеличение излучения происходит, если через диафрагму, даже небольшого диаметра, проходит провод, либо любой другой металлический предмет

Основным источником утечки СВЧ энергии из камеры печи служит дверца печи. Ситуация усугубляется тем, что именно со стороны дверцы находится пользователь. Таким образом, к конструкции дверцы печи предъявляются взаимопротиворечащие требования:

1. Легкость доступа к пище, находящейся внутри печи и обеспечение при этом защиты пользова

теля от облучения, даже если дверца открылась в процессе приготовления пищи.

2. Удобство наблюдения за процессом приготовления пищи.

3. Тщательная экранировка СВЧ излучения и недопущение его утечки из камеры.

Первое требование решается особой конструкцией запорной системы дверцы печи и применением трех, а в хороших печах - четырех выключателей защиты и блокировки.

Для выполнения второго и третьего требований используется специальная многорамочная конструкция дверцы.

Рис. 2. Конструкция дверцы печи, где А01 - рамка дверцы; А02 - пластина из акрила; А03 - держатель; А04 - петля дверцы со стопором; А05 - сварная рамка; А06 - пластина из полиэстера; А07 - уплотнитель; А08 - рычаг; А09 - пружина рычага

Конструкция дверцы СВЧ печи "Daewoo KOG-37050S" приведена на рис. 2.

В дополнение на рис. 3 приведена конструкция дверцы печи "Samsung CE101KR" в разобранном виде.

Рис. 3. Конструкция дверцы печи "Samsung CE101KR", где 1 - рамка дверцы; 2 - стекло дверцы; 3 - сборка дверцы; 4 - уплотнитель; 5 - толкатель выключателей; 6 - пружина; 7 - фиксирующие штыри; 8 - двухсторонние держатели

Как видно из рис. 2 и 3, смотровое окно дверцы печи перекрывается перфорированным металлическим листом. Все отверстия в этом листе играют роль запредельных диафрагм и должны минимизировать утечку СВЧ. При этом размеры отверстий либо пазов в дверце печи не превышают 2.3 мм.

Более сложно обеспечивается отсутствие утечки СВЧ по контуру дверцы. Между шасси печи и ее дверцей всегда имеются щели,

размер которых неизбежно увеличивается в процессе ее эксплуатации. То есть здесь создаются более чем благоприятные условия для значительной утечки радиации.

Чтобы решить эту проблему, используется метод так называемого "полуволнового шунтирования". Смысл его сводится к тому, чтобы из двух четвертьволновых отрезков создать короткозамкнутую полуволновую линию, в которой поле может существовать только в виде стоячей волны (см. рис. 4).

Рис. 4. Принцип полуволнового шунтирования

Для этого в дверце печи изготавливается специальный четвертьволновый паз. Как следует из рис. 4, вдоль паза и зазора будет находиться "ноль" электромагнитной волны, что исключает излучение СВЧ энергии за пределы камеры печи. Ослаблению просачивания СВЧ энергии наружу будет дополнительно способствовать также значительная разница в геометрических размерах - четверть длины основной рабочей волны печи составляет около

30 мм, а размер зазора - обычно около 0,1...0,2 мм. Это позволяет отказаться от непосредственного электрического контакта между дверцей и камерой печи. Для того, чтобы ситуация не ухудшилась от внезапно возникшего электрического контакта между дверцей и камерой печи (и вызванного им искрения), дверцу тщательно изолируют несколькими слоями лака. Однако метод полуволнового шунтирования хорошо работает только на определенной рабочей частоте. Как уже отмечалось, в камере СВЧ печи присутствует широкий спектр электромагнитных колебаний. В связи с этим, добиться указанным методом полного отсутствия утечки СВЧ радиации из микроволновой печи невозможно.

Рис. 5. Проверка зазора дверцы печи

При проведении ремонтных работ важно после снятия-установки дверцы печи убедиться в параллельности дверцы и шасси печи (см. рис. 5). Размеры "а" должны быть одинаковы и составлять 0,1...0,2 мм. При необходимости производят регулировку дверцы. Устанавливают дверцу так, чтобы не было люфта между внутренней поверхностью дверцы и шасси печи. Люфт следует проверять также периодически в процессе эксплуатации печи.

Если дверца установлена неверно, возможна опасная для здоровья человека утечка СВЧ радиации.

Измерение уровня утечки микроволновой энергии выполняют в следующей последовательности:

Устанавливают чашу объемом 600 мл, содержащую 275±15 мл холодной воды в центр поворотного стола печи;

Настраивают измеритель утечки (типа ПО-1, либо Holay H1-1500, либо Hi-1501 либо Nadra

8100/8200) на частоту 2450 МГц и калибруют его в соответствии с инструкцией изготовителя;

Измеряя утечку, всегда держат зонд прибора на расстоянии 50 мм от измеряемой поверхности;

Включают печь в режим работы с максимальной мощностью.

При измерении микроволнового излучения следует держать зонд перпендикулярно исследуемой поверхности (см. рис. 6).

Рис. 6. Измерение утечки СВЧ излучения из камеры печи

Следует передвигать зонд вдоль заштрихованной поверхности. Скорость перемещения зонда при этом не должна превышать 25 мм/с.

Работа СВЧ печи в разных режимах

Для защиты потребителя от микроволнового излучения в СВЧ печи используется специальный запорный механизм с тремя или четырьмя выключателями:

PRIMARY SWITCH - первичный выключатель;

SECONDARY SWITCH - вторичный выключатель;

DOOR SWITCH - дверной выключатель;

MONITOR SWITCH - защитный выключатель.

При работе печи подача сетевого напряжения на высоковольтный трансформатор питания магнетрона происходит только при замыкании контактов первичного и вторичного выключателей (при закрывании дверцы).

Дверной выключатель преимущественно используется в печах с электронным управлением и служит для блокирования работы реле

регулирования мощности печи. Контакты реле размыкаются и обесточивают высоковольтный трансформатор.

Защитный выключатель при закрывании дверцы печи переключается первым. При открытой дверце печи его контакты шунтируют первичную обмотку высоковольтного трансформатора.

Если дверца печи закрыта, то защитный выключатель печи разомкнут. Этот выключатель создает короткое замыкание питающего сетевого напряжения, чтобы сжечь сетевой плавкий предохранитель номиналом 10.16 А при опасной для человека работе печи с открытой дверцей, когда продолжается генерация СВЧ излучения (например, если контакты первичного и вторичного выключателя по какой-то причине не разомкнулись и не обесточили цепь).

Во всех фирменных инструкциях по обслуживанию СВЧ печей имеется следующее предупреждение:

"Для обеспечения постоянной, надежной защиты от микроволновой радиации, производите замену частей запорного механизма в соответствии с принципиальной электрической схемой печи. Используйте только указанные производителем типы выключателей.

В первую очередь это касается первичного, дверного (или вторичного в других типах печей) и защитного выключателей. Если возникла необходимость заменить хотя бы один из этих выключателей, следует заменять их все одновременно. После чего следует произвести настройку положения переключателей".

Работа защитной системы печи с электронным управлением

Рассмотрим работу систем защиты на примере модели "LG MC-804A". В обычном режиме в печи с электронным управлением после нажатия кнопки "Старт"(время приготовления пищи и выходная мощность печи заданы, дверца печи закрыта) контакты первичного и вторичного выключателей замыкают цепь и питающее напряжение 220 В поступает на высоковольтный трансформатор питания магнетрона (см. рис. 7).

Рис. 7. Работа печи с электронным управлением в обычном режиме

В этом режиме:

Двигатель поворотного подноса печи и циркуляционный двигатель включены;

Вентилятор включен и охлаждает магнетрон потоком воздуха, который поступает через отверстия в задней стенке;

Поток воздуха также направляется внутрь печи через основную и заднюю решетки, чтобы выпустить образующиеся при работе печи пары.

Если дверца печи открылась во время приготовления пищи, то при этом размыкаются первичный и вторичный выключатели. Они прерывают подачу напряжения на высоковольтный трансформатор, что приводит к прекращению СВЧ генерации.

В случае, если дверца открыта и контакты первичного выключателя и реле 2 и/или вторичного выключателя замкнуты, произойдет срабатывание защиты. При открывании дверцы контакты защитного выключателя замкнутся. При этом сетевой предохранитель печи окажется под действием большого тока, вызванного замыканием первичной обмотки высоковольтного трансформатора защитным выключателем, фактически к нему будет приложено питающее сетевое напряжение (см. рис. 8). Предохранитель перегорает, прекращается генерация СВЧ магнетроном.

Рис. 8. Работа печи с электронным управлением при открытии дверцы печи

Работа защитной системы печи с электромеханическим управлением

Рассмотрим работу защиты на примере модели "LG МН-592А".

В обычном режиме работы печи задана выходная мощность и время приготовления пищи. Контакты таймера замыкаются, когда поворачивается его рукоятка (регулятор мощности установлен в положение "Полная мощность"). После закрывания дверцы печи контакты первичного и вторичного выключателей замыкают цепь.

Рис. 9. Работа печи с электромеханическим управлением в обычном режиме

Питающее напряжение 220 В поступает на повышающий трансформатор (как стрелками показано на рис. 9).

При открывании дверцы печи во время приготовления пищи размыкаются первичный и вторичный выключатели. Они прерывают подачу напряжения на высоковольтный трансформатор, что приводит к прекращению СВЧ генерации.

Рис. 10. Работа печи LG с электромеханическим управлением при открытии дверцы печи

Если при открытии дверцы контакты первичного и вторичного выключателя остались замкнуты, то замыкаются контакты защитного выключателя и перегорает предохранитель печи. После этого прекратится генерация микроволнового излучения магнетроном (рис. 10).

В печах фирмы SAMSUNG с электромеханическим управлением используется несколько иная схема включения защитного выключателя (рис. 11).

Рис. 11. Работа печи SAMSUNG с электромеханическим управлением при открытии дверцы печи

В печах некоторых типов используются защитные выключатели с контактами не на замыкание, а на переключение (см. рис. 11, 12). В этом случае генерация СВЧ невозможна при неполном нажатии защитного выключателя. То есть в состоянии, когда при закрытой дверце его нормально замкнутые контакты разъединились, но нормально разомкнутые не замкнулись, предохранитель печи останется цел, однако магнетронный генератор работать не будет. На рис. 12 показана работа печей МН-592А и МН-593А фирмы LG с электронным управлением при открытии дверцы печи и оставшимся при этом замкнутым первичным выключателем.

Рис. 12. Работа печи фирмы LG с электронным управлением при открытии дверцы печи

Таким образом, микроволновая печь генерирует СВЧ излучение, если после закрытия ее дверцы оказались замкнуты:

Первичный выключатель;

Вторичный выключатель;

Дверной выключатель (для печей с электронным управлением).

При этом защитный выключатель должен быть разомкнут.

Методика уменьшения зазора между уплотнителем дверцы печи и камерой

Эта регулировка крайне важна, поскольку уменьшает утечку СВЧ из камеры печи. Регулировку следует производить при обнаружении неплотностей прилегания дверцы печи и также при обнаружении повышенной утечки СВЧ из печи. Рассмотрим методику регулировки защитных выключателей для печей фирм LG, Daewoo и Samsung.

Регулировка запорного механизма печей LG

Монтаж первичного, защитного и вторичного выключателей на щеколде печи с электронным управлением типа MC-804AR показан на рис. 13.

Рис. 13. Защитные выключатели печи MC-804AR

Стрелками указано направление перемещения переключателей для установки их в правильное положение.

При установке и настройке щеколды следует:

Установить щеколду в сборе на шасси печи;

Установить щеколду в такое положение (направления указаны стрелками на рис. 13), чтобы не было никакого люфта при закрытой дверце печи;

Затянуть монтажные винты;

Проверить ход дверцы при плавном, но не полном нажатии на кнопку открывания дверцы. Люфт дверцы должен быть менее 0,5 мм.

Примечание. Не нажимать на кнопку дверцы во время регулировки положения выключателей запорной системы.

Проследите за тем, чтобы щеколда после регулировки перемещалась плавно и ее крепежные винты были затянуты. Обратите внимание на то, чтобы первичный, защитный и вторичный выключатели работали исправно: при открывании дверцы вначале должны размыкаться первичный и вторичный выключатели, а только затем замыкаться контакты защитного выключателя.

Рис. 14. Регулировочные зоны для печей DAEWOO

Регулировка запорного механизма печей DAEWOO

Рассмотрим регулировку на примере печи с электронным управлением типа KOC-995T0S. Регулировка производится отдельно для четырех условных зон печи, которые обозначены на рис. 14 буквами A, B, C, D.

Уменьшение зазора в зоне А

1. Ослабляют два винта крепления верхней петли дверцы.

2. Нажимают на верхнюю часть дверцы так, чтобы уплотнитель дверцы плотно прилегал к поверхности камеры печи.

3. Закручивают два винта верхней петли дверцы.

Уменьшение зазора в зоне В

1. Ослабляют два винта крепления нижней петли дверцы.

2. Нажимают на нижнюю часть дверцы так, чтобы уплотнитель дверцы плотно прилегал к поверхности камеры печи.

3. Закручивают два винта нижней петли дверцы.

Уменьшение зазора в зоне С

1. Ослабляют винт крепления сборки вторичного и защитного выключателей, который расположен в дне шасси печи (см. левую часть рис. 15).

Рис. 15. Регулировка зазора в зоне С

2. Задвиньте сборку из вторичного и защитного выключателя настолько глубоко внутрь печи, как только позволяет нижний крючок защелки дверцы печи.

3. Затяните винт крепления.

Уменьшение зазора в зоне D

1. Ослабляют винт крепления первичного выключателя, расположенный в верхней части шасси печи. (см. правую часть рис. 15).

2. Задвигают первичный выключатель настолько глубоко внутрь печи, как только позволяет верхний крючок защелки дверцы печи.

3. Затягивают винт крепления.

Рис. 16. Конструкция запорного механизма фирмы DAEWOO

После окончания регулировки дверцы проверяют правильность последовательности переключения первичного, вторичного и защитного выключателей при открывании и закрывании дверцы печи, как указано выше. Допустим небольшой зазор между уплотнителем дверцы и камерой печи, если уровень СВЧ утечки не превышает 4 мВт/см 2 .

В печах DAEWOO применяется также конструкция запорного механизма,показанная на рис. 16. Ее регулировка производится аналогично описанному выше. Регулировка запорного механизма печей фирмы Samsung

В печах SAMSUNG вторичный выключатель называется "дверной выключатель". В печах с механическим управлением он коммутирует цепь подачи питающего напряжения на высоковольтный трансформатор, а в печах с электронным управлением его замкнутые контакты включают реле регулировки мощности печи. Типовая принципиальная электрическая схема печи SAMSUNG с электронным управлением приведена на рис. 17.

Рис. 17. Принципиальная электрическая схема печи SAMSUNG с электронным управлением

Рис. 18. Устройство запорной системы печей SAMSUNG (вариант 1)

В печах SAMSUNG используется несколько вариантов конструкции запорного механизма, различающихся также и расположением дверных выключателей. Варианты устройства запорной системы приведены на рис. 18-21.

Рис. 19. Устройство запорной системы печей SAMSUNG (вариант 2)

Рис. 20. Устройство запорной системы печей SAMSUNG (вариант 3)

Рис. 21. Устройство запорной системы печей SAMSUNG (вариант 4)

После замены дверных выключателей печи следует настроить их положение в соответствии с изложенной ниже процедурой. После подстройки положения переключа

телей проверяют правильность их срабатывания в соответствии с таблицей.

Процедура настройки положения выключателей

1. Выключатели следует установить так, как показано на рис. 1821. При этом специальная настройка не требуется.

2. При монтаже защелки на шасси печи следует передвинуть защелку в такое положение, чтобы дверца печи плотно запиралась без люфта. Перед окончательным закреплением дверцы проверяют ее на отсутствие люфта, подергав дверцу в разные стороны. После настройки положения защелки все выключатели должны легко включаться. Теперь можно окончательно затянуть крепежные винты.

3. Отсоединяют провода от защитного выключателя и проверяют его сопротивление, а также остальных выключателей при открытой и закрытой дверце на соответствие с приведенными в таблице.

Сопротивление между контактами выключателей

4. Убеждаются в том, что зазор между кнопкой выключателя и его толкателем не превышает 0,5 мм при закрытой дверце.

Устранение неисправностей запорной системы

Сетевой предохранитель печи бессистемно перегорает при открывании или закрывании дверцы. В остальном печь работает нормально. Причем после замены предохранителя печь может нормально работать продолжительное время, при очередном открывании дверцы предохранитель снова перегорает.

Это дефект связан с нарушением последовательности переключения контактов выключателей дверцы печи при открывании/закрывании дверцы. Защитный выключатель печи должен срабатывать первым при закрывании дверцы и последним - при ее открывании. Если этого не произойдет и переключатель сработает, когда еще не разомкнулись контакты первичного и вторичного выключателя, то через уже переключившиеся контакты защитного выключателя сетевое напряжение окажется приложенным к предохранителю печи и тот перегорит.

Установить причину можно, включив последовательно с сетевым шнуром печи лампу накаливания 60 Вт/220 В. Если при закрывании/открывании дверцы печи (это надо делать многократно и с разной скоростью) лампа вспыхнет, значит защитный выключатель срабатывает неправильно и "сжигает" предохранитель печи.

Сложность локализации подобного дефекта состоит в том, что при наличии в запорном механизме печи люфта он может проявляться с различной периодичностью. Поэтому недостаточно просто закрепить "болтающийся" на своем посадочном месте выключатель. Следует проверить крепление всех выключателей дверцы печи, устранить люфт в запорном механизме, а также проверить зазоры между дверцей печи и ее корпусом.

Частой причиной подобной неисправности бывают поломки пластиковых упоров выключателей. При этом выключатель болтается на своем месте. Устранить дефект можно не только заменой щеколды, но и фиксацией выключателя в пластиковой конструкции посредством вплавления паяльником отрезков одножильного провода нужной длины.

Иногда в запорном механизме используется механический демпфер, обеспечивающий задержку переключения защитного выключателя на 0,5.1 с после открытия дверцы печи. Поломка пружин демпфера или их отсутствие также приводит к указанной неисправности.

В заключение необходимо отметить, что неправильное срабатывание переключателей может быть вызвано их загрязнением.

В печи включается лампа подсветки, работает двигатель вращающегося подноса, но генерация СВЧ отсутствует. Причем периодически печь не включается вовсе, а иногда работает совершенно нормально

Возможно несколько причин подобной неисправности:

1. Периодически не срабатывают выключатели дверцы печи. Если не замыкаются контакты вторичного (дверного) выключателя, то двигатель и лампа печи будут включаться, а на высоковольтный трансформатор напряжение поступать не будет и, соответственно, будет отсутствовать генерация СВЧ. Поэтому вначале следует проверить исправность и правильность работы дверных выключателей.

2. Неправильное функционирование блока управления печи. Самая простая причина этого - заниженная величина питающего напряжения блока управления.

Литература

1. Ф. В. Соркин. Защита пользователя от электромагнитных полей. Киев, 1998 г

2. П. С. Довгаль. Защита от электромагнитных полей. Киев, 1998 г

3. Г.С. Сапунов. Ремонт микроволновых печей. М., "Солон-Р", 2000 г.

Электромагнитное поле (ЭМП) опасно для здоровья только в том случае, когда оно достаточно интенсивное , и только при продолжительном воздействии .

А высока интенсивность ЭМП у следующей бытовой техники:
– Холодильники с системой “без инея” (“No frost”),
– Мобильные телефоны, устройства Wi-Fi,
– СВЧ-печи,
– Обогреватели,
– Некоторые виды “теплых полов”,
– Телевизоры (старого типа, на электронно-лучевой трубке – жидкокристаллических это касается меньше),
– Компьютерные мониторы (старого типа, на электронно-лучевой трубке – жидкокристаллических это касается меньше),
– Некоторые системы сигнализации,
– Зарядные устройства, стабилизаторы напряжения и т.п.

Как защитить себя от вредного излучения

Защититься от электромагнитного поля этих устройств, на самом деле, легко. Вот несколько простых советов:

– Размещайте подобную технику не ближе 1,5-2 м от вашего кресла, кровати, обеденного стола и т.п. Например, не надо спать с включенным телефоном под подушкой или обедать, сидя вплотную к любимому холодильнику с системой “No frost” (“без инея”).

– Если в квартире или рядом с квартирой находятся электрощитки, мощные кабели и т.п., то место вашего отдыха должно располагаться на еще большем от них расстоянии: 2,5-3 м. Для большей уверенности можно вызвать специалистов для измерения поля от этих устройств. Например, в Москве и области можно обратиться в организацию, занимающуюся этим профессионально .

– Устанавливая “теплый пол”, не поленитесь выбрать модель с пониженным уровнем электромагнитного поля. Особенно, если у вас маленький ребенок, который будет проводить немало времени на полу, играя.

– Про компьютерные мониторы вы можете прочитать в статье

А теперь подробнее об СВЧ-печах .

Электромагнитное поле СВЧ-печи

В СВЧ-печах (микроволновых печах) пища разогревается как раз засчет электромагнитного поля высокой частоты. В современных СВЧ-печках предусмотрена защита от воздействия этого поля на владельца печи. И, хотя часть электромагнитного излучения все-таки может проникать вовне, в этом нет ничего страшного. Ведь, скорее всего, вы включаете печь ненадолго и не пользуетесь ей сутки напролет…

Для большей уверенности, во время использования микроволновки, можно отходить от включенной печи на 1,5 м – там столь вредного воздействия электромагнитного поля уже точно не будет.

Другое дело, если человек работает с СВЧ-печью весь день , разогревая на ней пищу, например, в кафе. В этом случае тем более очень желательно держаться от включенной микроволновки на расстоянии хотя бы 1,5 м. И время от времени приглашать специалистов для проверки электромагнитного излучения печки (требуйте предъявления аттестата аккредитации).

Как при покупке выбрать СВЧ-печь с меньшим полем?

Во-первых, не стремитесь выбрать самую мощную модель – лучше мощность пусть будет поменьше.
Во-вторых, проверьте, плотно ли закрывается дверца.
Наконец, попросите у продавца сертификат соответствия или Гигиеническое заключение. Там должно быть написано, что печь соответствует санитарным нормам СН № 2666-83. Впрочем, эта рекомендация в наших условиях ровным счетом ничего не гарантирует.

Защита от утечки электромагнитного поля из СВЧ-печи

Защита от “утечки” электромагнитного поля из микроволновки рассчитана на несколько лет надежной работы . Потом могут появиться трещинки в уплотнении дверцы, и защита ослабнет. Чтобы защита прослужила дольше, аккуратнее обращайтесь с дверцей и уплотнением, очищайте их от грязи. Через 5 лет эксплуатации стоит вызвать специалиста для измерения электромагнитного поля (см. выше).

© wegonnaplay.ru, 2024
Wegonnaplay - Игры каждый день