Что такое мультиплексоры связи. Применение мультиплексоров. Волоконно-оптические сети и системы связи

10.01.2023

3.7. Мультиплексоры и демультиплексоры

Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему единственному выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует управляющему двоичному коду.

Ну и частное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Структуру мультиплексора можно представить различными схемами, например, вот этой:

Рис. 1 – Пример схемы конкретного мультиплексора

Самый большой элемент здесь это элемент И-ИЛИ на четыре входа. Квадратики с единичками - инверторы.

Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них подают информацию, которую предстоит выбрать. Входы А0-А1 называются адресными входами. Сюда и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y . Вход С – синхронизация, разрешение работы.

На схеме еще есть входы адреса с инверсией. Это чтобы сделать устройство более универсальным.

На рисунке показан, как еще его называют, 4Х1 мультиплексор. Как мы знаем, что число разных двоичных чисел, которые может задавать код, определяется числом разрядов кода как 2 n , где n – число разрядов. Задавать нужно 4 состояния мультиплексора, а, значит, разрядов в коде адреса должно быть 2 (2 2 = 4).

Для пояснения принципа работы этой схемы посмотрим на её таблицу истинности:

Так двоичный код выбирает нужный вход. Например, имеем четыре объекта, и они подают сигналы, а устройство отображения у нас одно. Берем мультиплексор. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта.

Микросхемой мультиплексор обозначается так:

Рис. 2 – Мультиплексор как МКС

Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и много выходов. Двоичный код определяет, какой выход будет подключен ко входу.

Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких своих выходов и подключает его к своему входу или, ещё, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов.

Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И частное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный.

Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования.

Из-за сходства схем мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексором и демультиплексором, смотря с какой стороны подавать сигналы.

Например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то есть, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (логических 0 или 1) существует возможность переключения аналоговых.

Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Рассмотрим схему селектора входов УМЗЧ . Построим её с использованием триггеров и мультиплексора.

Рис. 3 - Селектор входных сигналов

Итак, разберем работу. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор.

В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки.

Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажатии на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого.

С одной стороны просто, с другой немного неудобно. Кто его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу сейчас. Хорошо бы поставить индикатор подключенного входа.

Вспоминаем семисегментный дешифратор. Переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выводы 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выводы 1 и 13). Входы дешифратора 4 и 8 (выводы 2 и 6) соединяем с корпусом (т. е. подаем лог. 0). Индикатор будет показывать состояние кольцевого счетчика, а именно цифры от 0 до 3. Цифра 0 соответствует первому входу, 1 - 2-му и т. д.

В данной статье мы рассмотрим мультиплексор, подробно опишем принцип его работы, в каких целях используется, как изображается на схеме, а так же как подключается. Рассмотрим 2-х и 4-х канальный мультиплексор.

Описание и принцип работы

Мультиплексирование — это общий термин, используемый для описания операции отправки одного или нескольких аналоговых или цифровых сигналов по общей линии передачи в разное время или на разных скоростях, и как таковое устройство, которое мы используем для этого, называется мультиплексором . Приобрести мультиплексор вы можете на Алиэкспресс:

Мультиплексор , сокращенно «MUX» или «MPX», представляет собой комбинационную логическую схему, предназначенную для переключения одной из нескольких входных линий на одну общую выходную линию с помощью управляющего сигнала. Мультиплексоры работают как быстродействующие многопозиционные поворотные переключатели, соединяющие или контролирующие несколько входных линий, называемых «каналами», по одному за раз.

Мультиплексоры могут представлять собой либо цифровые схемы, выполненные из высокоскоростных логических элементов, используемых для переключения цифровых или двоичных данных, либо они могут быть аналоговыми типами, использующими транзисторы, полевые МОП-транзисторы или реле для переключения одного из входов напряжения или тока на один выход.

Основным типом мультиплексора является однонаправленный поворотный переключатель, как показано на рисунке.

Поворотный переключатель, также называемый пластинчатым переключателем, поскольку каждый слой переключателя известен как пластина, представляет собой механическое устройство, вход которого выбирается вращением вала. Другими словами, поворотный переключатель — это ручной переключатель, который можно использовать для выбора отдельных линий данных или сигналов, просто повернув его входы «ВКЛ» или «ВЫКЛ». Итак, как мы можем выбрать каждый ввод данных автоматически с помощью цифрового устройства.

В цифровой электронике мультиплексоры также известны как селекторы данных, поскольку они могут «выбирать» каждую входную линию и состоят из отдельных аналоговых переключателей, заключенных в единый пакет ИС, в отличие от селекторов «механического» типа, таких как обычные переключатели и реле.

Они используются в качестве одного из методов уменьшения количества логических элементов, требуемых в конструкции схемы, или когда требуется, чтобы одна линия данных или шина данных передавали два или более различных цифровых сигналов. Например, один 8-канальный мультиплексор.

Как правило, выбор каждой входной линии в мультиплексоре контролируется дополнительным набором входов, называемых линиями управления, и в соответствии с двоичным состоянием этих управляющих входов, либо «ВЫСОКИМ», либо «НИЗКИМ», соответствующий вход данных подключается напрямую к выходу. Обычно мультиплексор имеет четное количество 2 n строк ввода данных и количество «управляющих» входов, которые соответствуют количеству входов данных.

Обратите внимание, что мультиплексоры отличаются по работе от кодеров . Кодеры могут переключать n-битный шаблон ввода на несколько выходных строк, которые представляют двоичный кодированный (BCD) выходной эквивалент активного входа.

Мы можем построить простой мультиплексор 2 в 1 из базовых логических «НЕ И» элементов, как показано на рисунке.

2-х канальный мультиплексор

Вход А этого простого мультиплексора схемы 2-1, построенной из стандартных логических элементов действует, чтобы контролировать какой вход (I 0 или I 1) передается на выход Q.

Из приведенной выше таблицы истинности мы можем видеть, что, когда вход выбора данных A в логике 0, вход I 1 передает свои данные через схему мультиплексора логического элемента «НЕ И» на выход, в то время как вход I 0 блокируется. Когда выбор данных A в логике 1, происходит обратное, и теперь вход I 0 передает данные на выход Q, в то время как вход I 1 блокируется.

Таким образом, применяя либо логическую «0», либо логическую «1» в точке A, мы можем выбрать соответствующий вход, I 0 или I 1, при этом схема будет немного похожа на однополюсный переключатель двойного хода (SPDT).

Поскольку у нас есть только одна линия управления, (A), то мы можем переключать только 2 1 входа, и в этом простом примере 2-входной мультиплексор соединяет один из двух 1-битных источников с общим выходом, создавая 2-в-1 мультиплексор. Мы можем подтвердить это в следующем булевом выражении.

и для нашей схемы 2-входного мультиплексора можно упростить к:

Мы можем увеличить количество входных данных, которые будут выбраны в дальнейшем, просто следуя той же процедуре, и более крупные схемы мультиплексоров могут быть реализованы с использованием меньших 2-в-1 мультиплексоров в качестве их основных строительных блоков. Таким образом, для мультиплексора с 4 входами нам потребуется две строки выбора данных, поскольку 4 входа представляют 2 2 линии управления данными, дающие схему с четырьмя входами, I 0 , I 1 , I 2 , I 3 и двумя линиями выбора данных A и B, как показано.

Булевое логическое выражение для этого мультиплексора 4-в-1 с входами от A до D и линиями выбора данных a, b задается как:

В этом примере в любой момент времени только один из четырех аналоговых переключателей замкнут, соединяя только один из входных линий от A до D к одному выходу Q. То, какой переключатель замкнут, зависит от входного кода адресации в строках « a » и « b ».

Таким образом, для этого примера, чтобы выбрать вход B для выхода в точке Q, адрес двоичного входа должен быть « a » = логическая «1» и « b » = логический «0». Таким образом, мы можем показать выбор данных через мультиплексор как функцию битов выбора данных, как показано.

Добавление большего количества линий адреса управления (n) позволит мультиплексору управлять большим количеством входов, поскольку он может переключать 2 n входов, но каждая конфигурация линии управления будет подключать только ОДИН вход к выходу.

Тогда реализация вышеуказанного логического выражения с использованием отдельных логических элементов потребует использования семи отдельных элементов, состоящих из элементов «И» , «ИЛИ» и «НЕ», как показано.

4-канальный мультиплексор с использованием логических элементов

Символ, используемый в логических схемах для идентификации мультиплексора, выглядит следующим образом:

Символ мультиплексора на схеме

Мультиплексоры не ограничиваются простым переключением нескольких различных входных линий или каналов на один общий выход. Существуют также типы, которые могут переключать свои входы на несколько выходов и иметь конфигурации 4-к-2, 8-к-3 или даже 16-к-4 и т.д. И пример простого двухканального 4-входного мультиплексора (4- к-2) приводится ниже:

Здесь, в этом примере, 4 входных канала переключаются на 2 отдельные выходные линии, но возможны и более крупные конфигурации. Эту простую конфигурацию 4-в-2 можно использовать, например, для переключения аудиосигналов для стерео предварительных усилителей или микшеров.

Регулируемый усилитель

Наряду с отправкой параллельных данных в последовательном формате по одной линии передачи или соединению, другое возможное использование многоканальных мультиплексоров — в устройствах цифрового аудио в качестве микшеров или где, например, усиление аналогового усилителя может регулироваться цифровым образом.


Здесь усиление напряжения инвертирующего операционного усилителя зависит от соотношения между входным резистором R IN и его резистором обратной связи Rƒ, как определено в руководствах по операционному усилителю.

Один 4-канальный SPST-переключатель, сконфигурированный как мультиплексор 4-к-1 канала, соединен последовательно с резисторами, чтобы выбрать любой резистор обратной связи для изменения значения Rƒ . Комбинация этих резисторов будет определять общее усиление напряжения усилителя (Av). Затем усиление напряжения усилителя можно отрегулировать цифровым способом, просто выбрав соответствующую комбинацию резисторов.

Цифровые мультиплексоры иногда также называют «селекторами данных», поскольку они выбирают данные для отправки на выходную линию и обычно используются в коммуникационных или высокоскоростных коммутационных сетях, таких как приложения LAN (локальная вычислительная сеть) и интернет.

Некоторые интегральные микросхемы имеют один инвертирующий элемент, подключенный к выходу, чтобы обеспечить положительный логический выход (логическая «1») на одном элементе и дополнительный отрицательный логический выход (логическая «0») на другом элементе.

Можно сделать простые схемы мультиплексора из стандартных элементов «И» и «ИЛИ», как мы видели выше, но обычно мультиплексоры / селекторы данных доступны в виде стандартных пакетов ic, таких как общий мультиплексор с 8 входами в 1 TTL 74LS151 или TTL 74LS153 Dual Мультиплексор 4 входа на 1 линию. Схемы мультиплексора с гораздо большим числом входов могут быть получены путем каскадного соединения двух или более устройств меньшего размера.

Краткий обзор мультиплексора

Мультиплексоры являются коммутационными цепями, которые просто переключают или направляют сигналы через себя, и, будучи комбинационной схемой, они не имеют памяти, поскольку нет пути обратной связи по сигналам. Мультиплексор является очень полезной электронной схемой, которая используется во многих различных устройствах, таких как маршрутизация сигналов, передача данных и приложения управления шиной данных.

При использовании с демультиплексором параллельные данные могут передаваться в последовательной форме по одному каналу передачи данных, например по оптоволоконному кабелю или телефонной линии, и снова преобразовываться в параллельные данные. Преимущество состоит в том, что требуется только одна последовательная строка данных вместо нескольких параллельных линий данных. Поэтому мультиплексоры иногда называют «селекторами данных», так как они выбирают данные в линию.

Мультиплексоры также могут использоваться для коммутации аналоговых, цифровых или видеосигналов, причем ток переключения в аналоговых цепях питания ограничен величиной от 10 мА до 20 мА на канал, чтобы уменьшить тепловыделение.

В следующей статье о комбинационных логических устройствах мы рассмотрим противоположность мультиплексора, называемого демультиплексором , который занимает одну входную линию и соединяет ее с несколькими выходными линиями.

Мультиплексорами называются устройства, которые позволяют подключать несколько входов к одному выходу. называются устройства, которые позволяют подключать один вход к нескольким выходам. В простейшем случае такую коммутацию можно осуществить при помощи ключей:


Рисунок 1. Коммутатор (мультиплексор), собранный на ключах

Такой коммутатор одинаково хорошо будет работать как с аналоговыми, так и с цифровыми сигналами. Однако скорость работы механических ключей оставляет желать лучшего, да и управлять ключами часто приходится автоматически при помощи какой-либо схемы.

В цифровых схемах требуется управлять ключами при помощи логических уровней. То есть нужно подобрать устройство, которое могло бы выполнять функции электронного ключа с электронным управлением цифровым сигналом.

Особенности построения мультиплексоров на ТТЛ элементах

Попробуем заставить работать в качестве электронного ключа уже знакомые нам . Рассмотрим таблицу истинности логического элемента "И". При этом один из входов логического элемента "И" будем рассматривать как информационный вход электронного ключа, а другой вход — как управляющий. Так как оба входа логического элемента "И" эквивалентны, то не важно какой из них будет управляющим входом.

Пусть вход X будет управляющим, а Y — информационным. Для простоты рассуждений, разделим таблицу истинности на две части в зависимости от уровня логического сигнала на управляющем входе X.

По таблице истинности отчетливо видно, что пока на управляющий вход X подан нулевой логический уровень, сигнал, поданный на вход Y, на выход Out не проходит. При подаче на управляющий вход X логической единицы, сигнал, поступающий на вход Y, появляется на выходе Out.

Это означает, что логический элемент "И" можно использовать в качестве электронного ключа. При этом не важно какой из входов элемента "И" будет использоваться в качестве управляющего входа, а какой — в качестве информационного. Остается только объединить выходы логических элементов "И" в один выход. Это делается при помощи логического элемента "ИЛИ" точно так же как и при . Получившийся вариант коммутатора с управлением логическими уровнями приведен на рисунке 2.


Рисунок 2. Принципиальная схема цифрового мультиплексора, выполненая на логических элементах

В схемах, приведенных на рисунках 1 и 2, можно одновременно включать несколько входов на один выход. Однако обычно это приводит к непредсказуемым последствиям. Кроме того, для управления таким коммутатором требуется много входов, поэтому в состав мультиплексора обычно включают двоичный , как показано на рисунке 3. Этот дешифратор получен нами ранее при помощи . Это позволяет управлять переключением информационных входов при помощи двоичных кодов, подаваемых на управляющие входы. Количество информационных входов в таких схемах выбирают кратным степени числа два.


Рисунок 3. Принципиальная схема мультиплексора, управляемого двоичным кодом

Условно-графическое обозначение четырёхвходового мультиплексора с двоичным управлением приведено на рисунке 4. Входы A0 и A1 являются управляющими входами рассматриваемой микросхемы, определяющими адрес входного сигнала, который будет соединён с выходом Y. Сами входные сигналы обозначены как X0, X1, X2 и X3.


Рисунок 4. Условно графическое обозначение четырёхвходового мультиплексора

В условно-графическом обозначении названия информационных входов A, B, C и D заменены названиями X0, X1, X2 и X3, а название выхода Out заменено на название Y. Такое название входов и выходов более распространено в отечественной литературе. Адресные входы обозначены как A0 и A1.

Особенности построения мультиплексоров на КМОП элементах

При работе с электронный ключ очень легко получить на одном или двух МОП транзисторах, поэтому в КМОП схемах логический элемент "И" в качестве электронного ключа не используется. Схема электронного ключа, выполненного на комплементарных МОП транзисторах, приведена на рисунке 5.


Рисунок 5. Схема электронного ключа, выполненного на КМОП транзисторах

Такой ключ может коммутировать как цифровые, так и аналоговые сигналы. Сопротивление открытых транзисторов составляет десятки Ом, а сопротивление закрытых транзисторов превышает десятки мегом. В этом есть как преимущества, так и недостатки. То, что ключ, собранный на МОП транзисторе, не является обычным логическим элементом, позволяет объединять выходы электронных ключей в точном соответствии со схемой, приведённой на рисунке 1. Это явно упрощает схему устройства.

Кроме того КМОП мультиплексор может быть использован для коммутации аналоговых сигналов. При этом только следует не забывать, что схема не выдерживает отрицательных напряжений. Это означает, что для аналоговых сигналов необходимо использовать схему смещения, так чтобы значения аналогового сигнала находились в диапазоне от потенциала общего провода схемы до напряжения питания мультиплексора.

В то же самое время, при работе с мультиплексором, собранным на КМОП ключах, приходится ставить на его входе и выходе логические элементы. Только в этом случае цифровая схема в целом будет функционировать правильно. Следует отметить, что в большинстве случаев это условие выполняется автоматически.

Теперь вспомним, что в мультиплексоре требуется подключать к выходу только один из входных сигналов. Точно также как и в для управления электронными ключами двоичным кодом в состав мультиплексора вводится дешифратор. Схема такого мультиплексора приведена на рисунке 6.


Рисунок 6. Схема мультиплексора на КМОП элементах

Условно-графическое обозначение мультиплексоров не зависит от технологии изготовления микросхем, то есть КМОП мультиплексор обозначается точно так же, как это приведено на рисунке 4.

В отечественных микросхемах мультиплексоры обозначаются буквами КП, следующими непосредственно за номером серии микросхем. Например, микросхема К1533КП2 является сдвоенным четырёхканальным мультиплексором, выполненным по ТТЛ технологии, а микросхема К1561КП1 является сдвоенным четырёхканальным мультиплексором, выполненным по КМОП технологии.

Литература:

Вместе со статьей "Мультиплексоры" читают:

Законы алгебры логики позволяют преобразовывать логические функции. Логические функции преобразуются с целью их упрощения, а это ведет к упрощению цифровой схемы...
http://сайт/digital/AlgLog.php

Любая логическая схема без памяти полностью описывается таблицей истинности... Для реализации таблицы истинности достаточно рассмотреть только те строки...
http://сайт/digital/SintSxem.php

Декодеры (дешифраторы) позволяют преобразовывать одни виды бинарных кодов в другие. Например...
http://сайт/digital/DC.php

Достаточно часто перед разработчиками цифровой аппаратуры встаёт обратная задача. Требуется преобразовать восьмиричный или десятичный линейный код в...
http://сайт/digital/Coder.php

Демультиплексорами называются устройства... Существенным отличием от мультиплексора является...
http://сайт/digital/DMS.php

ВВЕДЕНИЕ

мультиплексор селектор переключатель

Схемотехника - это наука, изучающая функционирование электронных устройств, способы их расчета, проектирования и производства. Как учебная дисциплина для специализации имеет цель ознакомить студентов с принципами действия электронных устройств и дать навыки по их проектированию.

В состав бытовой аппаратуры, автоматики, ЭВМ, связи и т.д. входят электронные устройства, называемые схемами. По разнообразию типов они сравнимы с механическими устройствами, имеющими многовековую историю.

Микроэлектроника является одной из наиболее быстро развивающихся областей науки и техники. Непрерывно улучшаются технические характеристики и расширяются функциональные возможности микроэлектронных изделий -- интегральных микросхем.

Основной функцией интегральных микросхем является обработка информации, заданной в виде электрического сигнала: напряжения или тока. Электрические сигналы могут представлять информацию в непрерывной (аналоговой) или дискретной (цифровой) форме. Микросхемы, выполняющие обработку этой информации, называются аналоговыми или цифровыми соответственно.

Современные интегральные микросхемы являются сложными электронными устройствами, поэтому используются различные уровни их схемотехнического представления. Наиболее детальный уровень представления -- электрическая схема в виде соединения отдельных компонентов. Следующий, более общий уровень -- структурная схема, представляющая собой соединение отдельных логических элементов и триггеров или аналоговых каскадов. Эти элементы и каскады выполняют элементарные логические (И--НЕ, ИЛИ-- НЕ и др.) или аналоговые (усиление, фильтрация и др.) операции, с помощью которых можно реализовать любую цифровую, аналого-цифровую или аналоговую функцию. Они имеют относительно простую электрическую схему, которая обычно содержит не более десяти -- двадцати компонентов. Еще более высокий уровень используется для представления сложнофункциональных БИС и СБИС: микропроцессоров, микро-ЭВМ, аналого-цифровых и цифро-аналоговых преобразователей и др. Их структура представляется в виде соединения функциональных узлов и блоков. Такое представление называется функциональной схемой. Структура входящих в ее состав функциональных узлов и блоков может состоять из десятков и сотен простейших логических элементов или аналоговых каскадов .

Мультиплексоры. Классификация и виды

Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует двоичному коду. Мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Рисунок 1 - Структура мультиплексора

Самая большая часть есть не что иное, как элемент И-ИЛИ. Конкретно здесь элемент 4-х входовый. Ну а квадратах с единичками внутри - инверторы. Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. Входы А0-А1, называются адресными входами. Вот сюда именно и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y.

Вход С - разрешение работы. На схеме еще есть входы адреса с инверсией. На этом рисунке показан четырех входовой, или как еще его называют, 4Х1 мультиплексор. Потому и адресных входов всего 2. Как нам известно, максимальное число переменных определяется как 2n, где n - разряд кода. Здесь мы видим, что переменных четыре штуки, а значит разряд будет равен 2 (22 = 4). Для пояснения принципа работы этой схемы посмотрим на таблицу истинности:

Вот так двоичный код выбирает нужный вход. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта.

Микросхемой мультиплексор обозначается вот так:

Рисунок 2 - Мультиплексор

Мультиплексоры делятся на множество видов. Есть и сдвоенные четырех входовые, восьми входовые, 16-ти входовые, счетверенные двухвходовые и пр.

Принцип действия мультиплексора основан на свойствах буфера памяти - информация записывается в него с одной тактовой частотой, а считывается с другой, более высокой. Если представить себе цепочку последовательно соединенных буферов, синхронизированных таким образом, что выходные пачки импульсов не перекрываются во времени, это и будет мультиплексор. В некоторых конструкциях цепочку замыкают в кольцо. Приходящие потоки демультиплексируются до уровня пакетированного элементарного потока (ПЭП) и затем заново "сшиваются" в единый ТП с общей тактовой частотой, синхронизированной с местным источником частоты 27 МГц. Поскольку время прихода пакетов на разные входы не синхронизировано, время пробега их внутри мультиплексора также различается, что может вызвать дрожание меток PCR. Для устранения этого явления для всех ремультиплексируемых сервисов производится коррекция PCR на основе специальных временных меток, вставляемых в пакет на входе мультиплексора.

Основным параметром мультиплексора считается выходная скорость ТП, которая у большинства моделей составляет 80-100 Мбит/с. Разумеется, выставляемая на выходе скорость ТП должна быть не ниже суммы скоростей всех объединяемых потоков. Превышение скорости выходного потока компенсируется введением нулевых пакетов на выходе мультиплексора. Чаше всего на выходе используется интерфейс DVB-ASI.

Ремультиплексоры представляют собой разновидность мультиплексоров, работающих не с отдельными сервисами, а с мультиплексированными ТП. Ремультиплексор выделяет из приходящих ТП нужные сервисы и комбинирует их в новые ТП, изменяя при этом соответствующим образом таблицы служебной информации. Ремультиплексоры еще называют процессорами транспортного потока (Transport Stream Procesor).

Рисунок 3 - Обобщенная схема мультиплексора

Цифровой мультиплексор представляет собой логическое комбинированное устройство, которое предназначено для управляемой передачи информации от нескольких источников данных в выходной канал. По сути, этот прибор представляет собой несколько цифровых позиционных переключателей. Получается, что цифровой мультиплексор является коммутатором входных сигналов в одну выходную линию.

Этот прибор имеет три группы входов:

  • адресные, на которых определяет то, какой информационный вход необходимо подключить к выходу;
  • информационные;
  • разрешающие (стробирующие).

В выпускаемых цифровой мультиплексор имеет максимально 16 информационных входов. Если проектируемое устройство требует большего количества, в таком случае строится структура так называемого мультиплексорного дерева из нескольких микросхем.

Цифровой мультиплексор может использоваться для синтеза практически любого логического устройства, благодаря чему существенно снижается количество используемых в схемах логических элементов.

Правила синтеза приборов на базе мультиплексоров:

  • строится карта Карно для выходной функции (по значениям переменных функций);
  • выбирается порядок использования в схеме мультиплексора;
  • строится маскирующая матрица, которая должна соответствовать порядку используемого мультиплексора;
  • необходимо наложить полученную матрицу на карту Карно;
  • после этого проводится минимизация функции отдельно для каждой области матрицы;
  • на основе результатов минимизации необходимо построить схему.

Теперь от теории перейдем к практике. Рассмотрим, где же применяются такие устройства.

Гибкие мультиплексоры предназначены для формирования цифровых потоков (первичных) со скоростью 2048 кбит/с из (речь), а также данных цифровых интерфейсов кроссовой коммутации электронных каналов со скоростью 64 кбит/с, передачи цифрового потока по сети IP/Ethernet и для конвертации линейной сигнализации и физических стыков.

С помощью такого устройства можно скоммутировать до 60 (в некоторых моделях эта цифра может быть больше) аналоговых окончаний в 1 или 2 или 128 абонентских комплектов на четыре потока Е1. Обычно в качестве аналоговых окончаний выступают линии ТЧ, имеющие внутриполосную сигнализацию, либо сигнализация реализуется на отдельном канале. Данные речевых каналов могут сжиматься до 32 или 16 кбит/с на один канал, для этого используется кодировка АДИКМ.

Гибкие мультиплексоры позволяют использовать широковещательные соединения, то есть подавать сигналы с одного из цифровых или аналоговых каналов на несколько других. Часто применяются для подачи радиовещательных программ одновременно в несколько различных пунктов.

Оптические мультиплексоры - это приборы, предназначенные для работы с потоками данных при помощи световых пучков, которые различаются амплитудной или фазовой а также длиной волны. К достоинствам таких приборов можно отнести устойчивость к внешним воздействиям, техническую безопасность, защиту от взлома передаваемой информации.

© wegonnaplay.ru, 2024
Wegonnaplay - Игры каждый день